Tuning Charge and Spin Excitations in Zigzag Edge Nanographene Ribbons
نویسندگان
چکیده
Graphene and its quasi-one-dimensional counterpart, graphene nanoribbons, present an ideal platform for tweaking their unique electronic, magnetic and mechanical properties by various means for potential next-generation device applications. However, such tweaking requires knowledge of the electron-electron interactions that play a crucial role in these confined geometries. Here, we have investigated the magnetic and conducting properties of zigzag edge graphene nanoribbons (ZGNRs) using the many-body configuration interaction (CI) method on the basis of the Hubbard Hamiltonian. For the half-filled case, the many-body ground state shows a ferromagnetic spin-spin correlation along the zigzag edge, which supports the picture obtained from one-electron theory. However, hole doping reduces the spin and charge excitation gap, making the ground state conducting and magnetic. We also provide a two-state model that explains the low-lying charge and spin excitation spectrum of ZGNRs. An experimental setup to confirm the hole-mediated conducting and magnetic states is discussed.
منابع مشابه
Novel Electronic States in Graphene Ribbons -Competing Spin and Charge Orders-
In a nanographene ring with zigzag edges, the spin-polarized state and the charge-polarized state are stabilized by the on-site and the nearest neighbor Coulomb repulsions, U and V , respectively, within the extended Hubbard model under the mean field approximation. In a Möbius strip of the nanographene with a zigzag edge, U stabilizes two magnetic states, the domain wall state and the helical ...
متن کاملRole of edges in the electronic and magnetic structures of nanographene
In graphene edges or nanographene, the presence of edges strongly affects the electronic structure depending on their edge shape (zigzag and armchair edges) as observed with the electron wave interference and the creation of non-bonding π -electron state (edge state). We investigate the edge-inherent electronic features and the magnetic properties of edge-sate spins in nanographene/graphene edg...
متن کاملInterplay between symmetry and spin-orbit coupling on graphene nanoribbons
We study the electronic structure of chiral and achiral graphene nanoribbons with symmetric edges, including curvature and spin-orbit effects. Curved ribbons show spin-split bands, whereas flat ribbons present spin-degenerate bands. We show that this effect is due to the breaking of spatial inversion symmetry in curved graphene nanoribbons, while flat ribbons with symmetric edges possess an inv...
متن کاملSpin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملCalculations of Electric Capacitance in Carbon and BN Nanotubes, and Zigzag Nanographite (BN, BCN) Ribbons
Electronic states in nanographite ribbons with zigzag edges are studied using the extended Hubbard model with nearest neighbor Coulomb interactions. The electronic states with the opposite electric charges separated along both edges are analogous as nanocondensers. Therefore, electric capacitance, defined using a relation of polarizability, is calculated to examine nano-functionalities. We find...
متن کامل